vertex

follow
lead
poi
secx      secy      secz
transf
vertex vol      vertex vol vertex vol      vertex vol vertex vol vertex vol
See also

vertex follow

vertex follow vol(id)

        Returns the numbers of the followers vertices of the volume id.

vertex follow vol(id)=s

        Changes these numbers.

vertex lead vol

vertex lead vol(id)

        Returns the numbers of the leader vertices of the volume id.

vertex lead vol(id)=s

        Changes these numbers.

vertex poi

vertex(a1,a2,...)vol(ida)poi(p1,p2,...)

The vertices ai of the volume ida are mapped to points pi.

vertex secx vol

vertex secx(s)vol(id)

        Returns the numbers of the x section s vertices of the volume id.

vertex secy vol

vertex secy(s)vol(id)

        Returns the numbers of the y section vertices s of the volume id.

vertex secy vol

vertex secz(s)vol(id)

        Returns the numbers of the z section vertices s of the volume id.
Note:
vertex secx vol, vertex secy vol and vertex secz vol are legal only for volumes isomorphic to a grid, such as those build ed by: ball, rev, grid, pipe.
Options:
ext: the sections of the extension.

vertex vol

vertex(s)vol(id)

Provides access to some properties of number s of vertex of volume id.
Examples:
col vertex(s)vol(id)
dist vertex(s1,s2)vol(id)

vertex vol vertex vol

vertex(a1,a2,...)vol(ida)vertex(b1,b2,...)vol(idb)

The vertices ai of volume ida will be mapped on the vertices bi of volume idb.
Faster than envelope vertex vol for many vertices associated to the same volume.
Options:
limit(d): dist((poi(ai)vol(ida)),(poi(bi)vol(idb))) < d (usefull with dynamic).
Example:
grid(1,2);tran(200,0,0)matrix vol(2);attach(0)vertex(1)vol(1)vertex(2)vol(2);
yes attach;screen;displ vol(1,2);

The vertex 1 of volume 1 is identical to the vertex 2 of volume 2.

vertex vol vertex vol vertex vol

vertex(va)vol(a)vertex(vb)vol(b)vertex(vc)vol(c)coe(d)

Does:
poi(va)vol(a)=d*(poi(vb)vol(b))+(1-d)*(poi(vc)vol(c)); (d=0.K5 by default).

vertex transf

vertex(s1)T1(p11,p12)vol(id1)T2(p21,p22)vol(id2)

       The parameters T1 of vertices s1 of volume id1 will vary between p11 and p12 when the parameters T2 of volume id2 vary between p21 and p22.
Example:
1) vertex[3,7]tran(-100,0,0, 100,100,0)vol(1)rotz(-PI,PI)vol(2)
       Points 3 to 7 of volume 1 are displaced between (-100,0,0) and (100,100,0) when the z rotation angle of volume 2 varies between -PI and PI (typically to deform the character limbs when moving).
2) tran(-100,0,0,100,0,0)vol(1)rotx(0,PI)vol(1);
       When rotz vol(1) varies between 0 and PI, tran vol(1) varies between -100,0,0 and 100,0,0 (produces an helicoidal movement).

See also:

attach vertex vol
generate col vertex vol
coe normal vertex vol
coe vertex vol
coord vertex vol
col vertex vol
deformation vertex vol
disk vertex vol
envelope vertex
ext vertex tan
func collision vol
generate box vertex vol
generate coord vertex vol
generate spring vol
generate speed vertex vol
generate radius near vertex vol
hom vertex vol
illum vertex vol
light vertex vol
mass vertex vol
motif vertex
normal vertex
number vertex displ
radius vertex vol
spring vertex vol
pull vertex vol
traj vertex vol